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Abstract

An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been
limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial
capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous
detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling
devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the
influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that
relates to home range size. We varied detection probability and home range size, and considered three trap configurations
common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster
configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of
traps. The clustered arrangement performed well when detection rates were low, and provides for easier field
implementation than the sequential trap arrangement. However, performance differences between trap configurations
diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home
range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture
models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our
simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area
size, ranges of individual movement, and home range sizes in the study population.
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Introduction

Estimating population parameters such as abundance and

density is crucial for understanding, managing, and conserving

animal populations. Capture-mark-recapture (CMR) methods are

a well-established approach in which repeated sampling with

replacement of a population provides information about detection

probabilities of individuals. CMR models have become increas-

ingly realistic by addressing assumptions about population closure

and capture probability [1–4], including the recent developments

of spatial capture-recapture (SCR) models. SCR models incorpo-

rate the geographic locations where individuals are detected,

thereby explicitly accounting for unequal detection probabilities

among individuals due to their unique spatial locations relative to

sampling devices (traps, snares, etc.) [5,6]. Unequal exposure of

individuals to the sampling array occurs when, for example, some

individuals have home ranges at the edge of the sampling array

while others are located more centrally and therefore are always

exposed to the sampling array [2,4,7,8]. As a result, non-spatial

capture-recapture methods estimate population size, but require

various ad-hoc approaches to convert estimates of population size

to estimates of density. Non-spatial approaches attempt to

homogenize the unequal trap exposure with methods such as

minimizing the ratio of edge to area of the sampling grid [9], or by

adding a buffer strip around the sampling array to account for

movements of ‘edge’ individuals [10–13]. Conversely, SCR

models directly estimate both population size and density; SCR

models allow for individual-specific detection probabilities by

accounting for the spatial organization of traps and by estimating

the activity centers of individuals. SCR models are thus liberated

from the assumption of geographic closure.

Two primary considerations of mark-recapture sampling design

are the spatial extent of the trap array and the spacing between

traps. An advantage of a large spatial extent is that it helps increase

the expected number of unique individuals detected. For non-

spatial approaches, Bondrup-Nielson [9] suggested that the spatial

extent of a study area be at least four times the home range size of

an individual. Large spatial extents also aim to capture the full

range of movement of individuals and homogenize unequal

detection rates among individuals [9,14,15]. Simultaneously, trap

spacing influences rates of detection and recaptures: trap

configurations with ‘‘holes’’, or traps that are too widely spaced

relative to ranges of individual movement, can lead to individuals

not being detected [12,16] as well as fewer recaptures of

individuals at different traps (i.e., spatial recaptures), which are

important for estimating home range sizes and movement ranges
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[15]. As a result, recommendations have been made to set at least

four traps in each potential non-overlapping home range [17].

With a constant number of traps due to logistical or monetary

considerations, a sampling trade-off occurs between spatial extent

and trap spacing.

Few simulation-based studies have been conducted on the

influence of sampling design on SCR parameter estimates

[15,18,19]. SCR approaches can theoretically accommodate

different spatial arrangements of traps because trap locations are

a formal part of the model [5] describing the probability of

encounter of individuals. However, spatial organization of the

trapping array is still an important consideration. Large numbers

of encountered individuals (sample size n) and recaptures are

necessary to estimate population parameters with accuracy and

precision, and trap arrangements need to be at spatial densities

and scales that permit detection of individual movement [15].

Much of the early research on sampling design was conducted in

small mammal community assemblages [20–22], and design

recommendations based on small mammal populations may be

hard to meet and are sometimes inappropriate for large-mammal

systems [12,19]. Recent work has focused specifically on sampling

designs for large-mammal populations with large home ranges and

ranges of movement [15,16,23,24], but the body of published

research remains scant. Notably, Sollmann et al. [15] demon-

strated with simulations and a study of a Michigan black bear

population that previously recommended spatial extents of at least

46 the home range size of individuals may be unnecessary. The

authors showed that spatial extents smaller than an average male

home range and only 1.56 larger than a female’s yielded

parameter estimates similar to when the full spatial extent was

used. The authors cautioned that the range of movement over the

sampling array is important for SCR models, and that the SCR

model performed well as long as the spatial scale parameter sigma

(s) was at least half the average trap spacing. This sigma

parameter describes the spatial scale over which an individual is

detected, and can be converted to an estimate of the 95% home

range radius [14]. The authors concluded that SCR models are

able to accurately and precisely estimate population parameters

for a range of sampling array extents, but that more research is

necessary to explore the limits of SCR abilities with respect to trap

configuration and extreme sampling designs.

Understanding the implications of different sampling designs is

crucial, especially given the amount of effort required in large

mammal mark-recapture studies and the increasing application of

SCR methods. Moreover, in sampling over large landscapes, it is

oftentimes not possible to achieve regular coverage of the

landscape with traps that are close enough together to yield

sufficient data for effective parameter estimation. Therefore,

strategies for distributing traps over the landscape in an efficient

manner must be developed and evaluated. To improve under-

standing of sampling design with respect to SCR methods, we

conducted simulations to investigate the effects of different trap

configurations and spacings that would be feasible in large-

mammal studies. First, we evaluated potential differences among

three common trap configurations: regular spacing, clustered, and

a temporal sequence of different clustered configurations (i.e., trap

relocation) [25]. The regular trap configuration, in which traps are

set systematically across the spatial extent, served as a baseline for

comparison. The clustered configuration maintained spatially

representative sampling over the entire spatial extent while

providing more information on the spatial scale of detection and

individual movement [17,19]. The third configuration evaluated

was a clustered configuration with trap relocation midway through

sampling; trap relocation is a common sampling approach to

increase detection probability, more thoroughly sample large study

areas, and avoid trap habituation and behavioral response [26].

Our second objective was to identify consequences of trap spacing

for a fixed study area by decreasing the number of traps while

maintaining the same spatial extent of the sampling array. We

conducted our simulation study using sampling design consider-

ations for American black bear (Ursus americanus), but the results are

generalizable to any wide-ranging animal population to which

SCR models might be applicable.

Methods

We based simulation conditions on characteristics of a black

bear population study conducted in southwestern New York,

USA. The simulated study area was a 2,624 km2 square centered

on a 4,100 km2 landscape. To determine trap placement in the

clustered and sequential trap configurations, we overlaid a grid of

64, non-overlapping, potential home ranges of 41 km2 each, based

on the average female home range size estimated in northwestern

Pennsylvania [27] (Figure 1).

SCR Model Formulation and Implementation
We used a binomial model for detection to create encounter

histories for individuals. For sampling over K sampling periods, the

number of encounters for an individual, i, in each of j = 1,…, J

traps, yij, has a binomial distribution with a parameter for

encounter probability, pij. In other words:

yij*Binom(K ,pij)

For the individual and trap-specific encounter probability, pij,

we used the half-normal model [28], which depends on the

baseline detection probability

p0~
ea0

1zea0

and a function of the Euclidean distance, Dij, between individual, i,

and trap, j, such that

Figure 1. Schematic representation of study area. A representa-
tion of the 2,264 km2 study area, divided into a grid of 64 cells of 41 km2

each, and set in the center of a 4,100 km2 landscape, which is outlined
in gray.
doi:10.1371/journal.pone.0088025.g001

Sampling Designs in Capture-Recapture Models
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pij~p0 � e
{D2

ij

2s2 ,

where s is a spatial scale parameter determining the rate of

decrease in encounter probability as a function of distance to trap

Dij. Most models for encounter probability have one or more

parameters that are related to home range size and movement

rates of individuals about their home range. For example, the half-

normal model above can be interpreted as implying a bivariate

normal model for movement, where s*
ffiffiffiffiffiffiffiffiffi

5:99
p

is the 95% home

range radius [14]. Detection of an individual at multiple traps

provides information on s, so we use the term ‘‘spatial captures’’

to refer to the number of unique traps at which an individual was

detected or captured.

We simulated SCR data for a population size of N= 500 over

K=10 sampling occasions. We distributed individuals over the

4,100 km2 landscape according to a random, uniform distribution,

allowing for overlapping home ranges. This translates to a black

bear density of 12.2 bears/100 km2, which is in the middle range

of bear densities across the United States (Snowy Range of

southeast Wyoming= 2.54 bears/100 km2) [29], central Appala-

chian Mountains in Kentucky = 8 bears/100 km2 [30], northern

New York = 20 bears/100 km2 [8], north-central Pennsylva-

nia = 23 bears/100 km2 [27], and Great Smoky Mountains,

Tennessee $29 bears/100 km2 [31]. We created nine detection

scenarios by varying the spatial scale parameter, s, and the

baseline detection probability, p0 (Figure 2). We used three values

of s (1, 5, and 10 km) to model a range of representative home

range sizes, spanning estimates of female and male home ranges

typical of bears in the northeastern United States [8,27,32,33]. We

used three values of p0 (0.05, 0.10, and 0.20) to explore a realistic

range for mark-recapture studies. The upper limit, p0=0.20 (i.e.,

20%), is the minimum suggested detection probability in non-

spatial mark-recapture studies [34,35], but lower probabilities

have been found to be sufficient for populations larger than N.

200 [31], so we also included lower detection probabilities.

Objectives
To evaluate the effect of sampling design on SCR parameter

estimation, we applied three trap configurations: 1) regularly

distributed across the study area, 2) grouped into clusters of 4 in

every other non-overlapping female home range and, 3) traps

relocated from one clustered configuration halfway through the

sampling period to a second clustered configuration (Figure 3).

To evaluate trap spacing over the study area, we increased trap

spacing from 4.7 km to 9.6 km by decreasing the number of traps

from J= 128 traps to 96, 64, and 32 traps over the same spatial

extent in the regular trap configuration (Table 1, Figure 4). This

also resulted in different effective trap spacings, trap spacings

relative to each value of s, ranging from 0.47s, when s=10 km,

to 9.60s when s=1 km (Table 2). Decreasing the number of

traps resulted in a trap density of 0.049/km2 with 128 traps,

0.037/km2 with 96 traps, 0.024/km2 with 64 traps, and 0.012/

km2 with 32 traps. The upper limit of 128 traps represents what

could be realistically employed over such a large study area given a

sampling frequency of once per week assuming two field teams,

while also maintaining a minimum of 4 trap sites per estimated

female home range. However, even this upper bound of trap

density falls severely short of suggestions for black bear studies of

0.17–0.50/km2 [29]. We decreased the number of traps for the

clustered and sequential trap configurations, although this did not

change trap spacing. We calculated trap spacing for the regular

trap configuration as the distance between a trap and the next

closest trap, or for the clustered and sequential trap configurations,

the distance between the centroids of a cluster and the next cluster.

We did not consider the clustered trap configuration when J = 32

since clusters would have consisted of only 1 trap and therefore be

equivalent to the regular configuration.

For each of the nine detection scenarios (p0 x s), we generated

500 simulated encounter histories for each combination of trap

configuration (n= 3) and trap spacing (n = 4). To estimate

abundance, N, and the spatial scale parameter, s, we used a

maximum likelihood approach [36,37]. We conducted the

simulations using Program R [38] and custom-written scripts

(Table S1 in File S1) with package ‘snowfall’ and ‘rlecuyer’

[39,40]. Estimates of N and s were compared to the simulated

truth. We used estimated means, standard deviations, ranges, root

mean squared error (RMSE), and mean normalized bias (MNB) to

evaluate the effects of trap configuration and spacing.

Results

Trap Configurations
The clustered trap configuration generally resulted in the most

accurate estimators of abundance, N̂N . The clustered trap

configuration yielded the lowest RMSEs in 8 of 9 combinations

of p0 (3 cases) and s (3 cases), i.e., with the exception of s=5 km

and p0 = 0.20 in which the sequential trap configuration resulted

in the most accurate N̂N (Table 3). The three trap configurations

resulted in similarly unbiased estimators of N̂N when effective trap

spacing was ,4.71s, i.e., when s .1 km. But when effective trap

spacing $4.71s (s=1 km), the clustered and sequential trap

configurations resulted in the lowest MNBs in the remaining 1 and

2 cases, respectively.

As the number of detected individuals and captures per

individual increased because of closer effective trap spacings,

Figure 2. Nine detection scenarios by varying s and p0. Nine
detection scenarios for N= 500 were created by evaluating three values
of the spatial scale parameter, (s= 10, 5, and 1 km), for each of three
baseline detection rates, (p0 = 0.20, 0.10, 0.05). As distance from an
individual’s activity center increases, detection decreases according to a
half-normal function based on the two parameters. Dashed vertical
lines indicate 95% home range radii (s*

ffiffiffiffiffiffiffiffiffi

5:99
p

).
doi:10.1371/journal.pone.0088025.g002
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estimators of N̂N improved (Table S2 in File S1). For example,

consider the clustered trap configuration when p0 = 0.05: when

effective trap spacing decreased from 9.06s to 0.91s due to an

increase in the fixed, biologically-determined s from 1 km to

10 km, the number of detected individuals increased from 38

individuals with fewer than 2 spatial recaptures to 493 individuals

(.98% of total population N=500) with 7.8 spatial recaptures

(Table S2 in File S1). When effective trap spacing was $4.71s
(i.e., when s $1 km), the sparse datasets, especially low rates of

spatial recaptures, resulted in unstable maximum likelihood

estimators (MLEs) and a strongly right-skewed sampling distribu-

tion of N̂N (Table 3). Therefore, population size was consistently

overestimated at all trap arrangements and detection rates.

Standard deviations (SD) and root mean square errors (RMSE)

were both at least 12% (Table 3). However, when effective trap

spacing was,4.71s (i.e., when s$5 km), the mean N̂N for all trap

configurations at all detection probabilities were within one

individual of the true N=500, and SD and RMSE no more than

3% (Table 3).

Estimators of ŝs performed similarly well across the three trap

configurations (Table 4). However, precision of the estimators for

any given trap configuration increased when the effective trap

spacing increased with larger values of s. Comparing estimators

across regular, clustered, and sequential trap configurations when

effective trap spacings were $4.71s and #0.91s (i.e., s=1 km

versus s=10 km), SD decreased from a maximum of 28% to

1.1% while MNB also decreased from a maximum of 18% to

0.2% (Table 4).

Trap Spacings and Traps per Cluster
As trap spacing increased from 4.71 km to 9.60 km by reducing

the number of traps (J = 128 to 32 traps), effective trap spacing

relative to s increased (Table 2). Individuals were detected fewer

times and with fewer spatial and non-spatial captures (Table S3 in

File S1). As a result, estimators of N̂N and ŝs decreased in accuracy

and precision as trap spacing increased and number of traps per

cluster decreased (Table 5,6 and Tables S5–9 in File S1). For

example, consider increased effective trap spacing from 4.71s to

9.60s (when s=1 km) at p0 = 0.20: population size was

increasingly overestimated as the number of detected individuals

decreased 73% and the spatial captures decreased from 1.1 to 1.0

(Table S3 in File S1). N̂N increased from 509 to 637, RMSE

increased from 15 to 84% (regular trap configuration, Table 5),

and RMSE of ŝs increased from 7% to 24% (Table 6). In some

cases, including all trap spacings and trap configurations when

p0= 0.05, the number of detected individuals was as low as 10

individuals (2% of total population N=500) and some simulated

datasets yielded only one capture for all detected individuals

(Table S3 in File S1). These sparse data sets caused the MLE to

occur on the boundary of the parameter space, and simulated data

sets for which this was the case were removed from the analysis.

For example, 231 such cases were discarded under the sequential

trap arrangement when p0 = 0.05 (Table S4 in File S1).

However, when effective trap spacing was #1.92s (i.e., when

s=5 and 10 km), the properties of the estimators N̂N and ŝs
became similar across trap spacing and number of traps per cluster

(Tables S5–9 in File S1). Estimators also increased in precision

Figure 3. Three trap configurations: regular, clustered, and sequential. Three trap configurations were evaluated, shown with J = 128 traps:
(a) regular array, (b), clustered, and (c) a temporal sequence in which clustered traps of one arrangement (e.g. triangle) are moved halfway through
the sampling period to new grids (e.g. squares). Gray gridlines in (b) and (c) overlay the non-overlapping grid sizes of an estimated female home
range. The black outline around the traps depicts the 2,624 km2 study area; the large gray square shows the extent of the 4,100 km2 landscape.
doi:10.1371/journal.pone.0088025.g003

Table 1. Trap spacing (km) for each combination of trap
configuration (regular, clustered, and sequential) and number
of traps (J = 128, 96, 64, and 32).

Number of traps, J

128 96 64 32

Regular 4.71 5.24 6.4 9.6

Clustered 9.06 9.06 9.06 N/A

Sequential 9.06 9.06 9.06 9.06

Trap spacing (km) in the regular trap configuration was varied by decreasing
the number of traps in the study area. Trap spacing did not vary when traps
were in the clustered or sequential configurations because reductions only
decreased the number of traps per cluster.
doi:10.1371/journal.pone.0088025.t001
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and accuracy. When s=10 km (p0 = 0.20), even as effective trap

spacing increased from 0.47s to 0.91s, the number of detected

individuals did not drop below 490 (98% of the true population

N=500,) until effective trap spacing decreased to 0.96s when

p0= 0.10 and 0.52s when p0 = 0.05 (Table S3 in File S1). As a

result, estimators of N̂N at all trap spacings were within 1 individual

of the true population (N̂N =499.4 to 499.9) and RMSE was less

than 1% (Table S6 in File S1). Estimators of ŝs had RMSEs of less

than 0.02% (Table S9 in File S1).

Discussion

We demonstrated that the clustered trap configuration generally

yielded the most accurate estimators of abundance, N̂N. The

regular trap configuration never out-performed the clustered or

sequential trap arrangements in precision of abundance estimates,

and in fact often resulted in fewer detected individuals, fewer total

captures, and fewer spatial recaptures. Consequently, clustered

and sequential trap arrangements even with fewer traps yielded

estimates of abundance that were as precise or more as the regular

trap configuration. Performance differences between the three trap

configurations were most marked when trap spacing was large

relative to home range size (Table 7). However, performance

differences between trap configurations diminished as home range

size increased.

SCR models are flexible to estimate population parameters with

accuracy and precision for sampling designs commonly employed

in studies of wide-ranging species. However, effective estimation in

SCR models depends on obtaining a sufficiently large sample size

of unique individuals and spatial recaptures. Compared to the

regular trap configuration, the clustered arrangement frequently

yielded more total captures and spatial recaptures, and the

sequential arrangement yielded more unique individuals. Al-

though the sequential configuration detected more unique

individuals by moving traps to new locations, the total number

of recaptures was fewer compared to the clustered configuration

because each trap was only available to detect individuals for half

the sampling occasions. Also, as detection rates decreased, more

traps per cluster were necessary to detect individuals and

recaptures. The necessity of sufficient sample sizes of individuals

and spatial recaptures was also highlighted by the instability of the

MLE under low detection (particularly p0 = 0.05) at small values of

the spatial scale parameter (s=1 km), which resulted in param-

eter estimates on the boundary of the parameter space [41,42].

Non-regular, and particularly the clustered, trap configurations

helped compensate for sparse trap arrays. This suggests that

precise estimates over a large study area are possible, even when

limited by a sparse and widely-set trap array, by arranging traps in

clusters. Clusters of traps increase the expected number of spatial

recaptures of individuals while the large spatial extent increases the

expected number of unique individuals detected.

Our simulations also suggest that it is important to prescribe

trap spacing relative to home range sizes of individuals. As the

spatial scale parameter, s, increased, differences between the

performance of SCR estimators with different trap configurations

diminished. For example, at the smallest value of s (1 km), trap

Figure 4. Trap configuration and number of traps generated eleven designs. Eleven trap designs were evaluated by varying the regular,
clustered, and sequential trap arrangements for J = 128, 96, and 64 traps. Only the regular and sequential arrangements were evaluated for J = 32
traps since the clustered arrangement with one trap per cluster was equivalent to the regular arrangement. Trap spacing did not change when traps
were in the clustered and sequential arrangements.
doi:10.1371/journal.pone.0088025.g004

Table 2. Effective trap spacings for each s, scaled by dividing trap spacings (4.71, 5.24, 6.40, and 9.60 km) by s (1, 5, 10 km).

s=1 km s=5 km s=10 km

Trap spacing (km) Trap spacing (km) Trap spacing (km)

4.71 5.24 6.40 9.60 4.71 5.24 6.40 9.60 4.71 5.24 6.40 9.60

Regular 4.71 5.24 6.40 9.60 0.94 1.05 1.28 1.92 0.47 0.52 0.64 0.96

Clustered 9.06 9.06 9.06 N/A 1.81 1.81 1.81 N/A 0.91 0.91 0.91 N/A

Sequential 9.06 9.06 9.06 9.06 1.81 1.81 1.81 1.81 0.91 0.91 0.91 0.91

For example, a trap spacing of 4.71 km equals 4.71s when s= 1 km but only 0.47s when s= 10 km.
Trap spacing of 9.60 km was not evaluated for the clustered trap configuration because it employs J = 32 traps and therefore is equivalent to the regular trap spacing.
doi:10.1371/journal.pone.0088025.t002

Sampling Designs in Capture-Recapture Models
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spacing in the regular configuration was 4.71 km, or .4s; but as
s increased to 10 km, this same trap spacing equated to just 0.47s
(Table 2). As a result, differences between trap arrangements were

negligible at s=10 km, even at the lowest detection rate

(p0 = 0.05). When traps are widely spaced relative to s, fewer
captures and spatial recaptures are collected. Accordingly,

parameter estimates improved markedly when s increased from

1 km to 5 km and trap spacing decreased to less than 2s (Table 7).

Home range diameters of black bears in the geographic region on

which these simulations were based range from 5.1–25.1 km [27],

coinciding with the value of s when accuracy and precision of our

parameter estimates improved. This pattern in trap spacing is

similar to the conclusions of Sollmann et al. [15] that recom-

mended trap distances be less than 2s. Since s is a spatial scale

parameter related to an individual’s home range radius, this

essentially suggests that at least ,2 traps should be placed within

an individual’s home range, a minimum that is smaller than the

traditional recommendation for trap density of 4 traps per home

range [17]. In evaluating trap spacings and configurations over a

range of values for s, our simulations also demonstrate the

importance of establishing a sampling design based on the smallest

(usually the female) estimate of s. Doing so helps ensure detection

of all individuals, even those with larger ranges of movement.

In field studies, implementing the sequential trap configuration

requires that twice the number of traps be set because traps are

moved half-way through the sampling period, which increases the

amount of associated work that setting traps entails. Our

simulations suggested that the different trap configurations

performed similarly when trap spacing was less than 2s, even
when the sequential trap configuration detected a greater number

Table 3. Summary estimates of N̂N when true population size N= 500 and J = 128 traps, under each of the three trap arrangements:
regular, clustered, and sequential, where mean, standard deviation (SD), range, root mean squared error (RMSE), and mean
normalized bias (MNB) are given for each scenario (p x s x configuration).

s=1 km s=5 km s=10 km

p0=0.20 Mean SD Min Max RMSE MNB Mean SD Min Max RMSE MNB Mean SD Min Max RMSE MNB

Regular 509.0 75.1 323.7 843.7 75.57 0.00 499.9 6.4 482.0 518.3 6.38 0.00 499.9 0.3 498.0 500.0 0.31 0.00

Clustered 503.4 60.8 344.8 683.6 60.80 0.01 499.3 5.9 480.0 516.1 5.93 0.00 500.0 0.2 499.0 500.0 0.20 0.00

Sequential 508.4 65.7 328.0 769.6 66.20 0.00 499.8 5.6 479.2 514.1 5.58 0.00 499.9 0.2 499.0 500.0 0.24 0.00

p0 =0.10

Regular 546.7 177.9 240.4 1696.0 183.78 20.01 499.7 9.4 471.5 525.5 9.41 0.00 499.6 1.1 495.8 501.1 1.14 0.00

Clustered 513.1 112.9 293.3 1168.3 113.58 0.02 499.7 8.5 471.3 523.3 8.53 0.00 499.5 1.0 495.3 500.7 1.13 0.00

Sequential 541.6 143.2 236.0 1164.9 148.94 20.02 499.7 8.8 472.3 524.9 8.81 0.00 499.4 1.0 496.2 500.6 1.14 0.00

p0 =0.05

Regular 2.8E11 6.3E12 1.7E2 1.41E14 6.29E12 20.23 499.2 14.1 454.3 538.3 14.08 0.00 499.6 3.0 491.3 507.2 3.04 0.00

Clustered 3.3E4 7.2E5 156.1 1.60E7 7.14E5 0.08 499.9 13.8 447.1 541.0 13.81 0.00 499.7 2.9 490.0 505.9 2.94 0.00

Sequential 7.0E4 1.5E6 126.4 3.43E7 1.54E6 0.02 500.6 14.0 449.0 537.9 13.97 0.00 499.3 3.0 482.3 506.3 3.12 0.00

Estimates are averages of 500 simulations.
doi:10.1371/journal.pone.0088025.t003

Table 4. Summary estimates of ŝs when the true population size N= 500 and J = 128 traps, under each of the three trap
arrangements: regular, clustered, and sequential, where mean, standard deviation (SD), range, root mean squared error (RMSE),
and mean normalized bias (MNB) are given for each scenario (p x s x configuration).

s=1 km s=5 km s=10 km

p0=0.20 Mean SD Min Max RMSE MNB Mean SD Min Max RMSE MNB Mean SD Min Max RMSE MNB

Regular 1.00 0.07 0.80 1.22 0.07 20.01 5.00 0.04 4.89 5.16 0.04 0.01 9.99 0.06 9.84 10.17 0.06 0.02

Clustered 1.00 0.07 0.81 1.27 0.07 20.01 5.00 0.04 4.85 5.11 0.04 0.01 10.00 0.05 9.81 10.16 0.05 0.01

Sequential 1.00 0.08 0.76 1.25 0.08 20.01 5.00 0.04 4.87 5.13 0.04 0.00 10.00 0.05 9.84 10.17 0.05 0.00

p0 =0.10

Regular 1.00 0.13 0.57 1.41 0.13 20.03 5.00 0.06 4.86 5.31 0.06 0.00 9.99 0.08 9.74 10.24 0.08 0.02

Clustered 1.01 0.14 0.63 1.52 0.15 20.05 5.00 0.07 4.77 5.22 0.07 0.01 10.00 0.08 9.74 10.21 0.08 0.00

Sequential 0.99 0.14 0.67 1.45 0.14 20.03 5.00 0.07 4.83 5.20 0.07 0.00 10.00 0.07 9.80 10.26 0.07 20.01

p0 =0.05

Regular 0.97 0.24 0.38 1.89 0.24 20.05 5.00 0.10 4.73 5.34 0.10 0.00 10.00 0.11 9.68 10.40 0.11 0.01

Clustered 1.06 0.28 0.59 1.98 0.28 20.18 4.99 0.10 4.66 5.47 0.10 0.02 10.00 0.11 9.58 10.33 0.11 0.01

Sequential 1.01 0.24 0.55 2.44 0.24 20.10 5.00 0.10 4.68 5.28 0.10 0.00 10.00 0.11 9.67 10.44 0.11 20.01

Estimates are averages of 500 simulations.
doi:10.1371/journal.pone.0088025.t004
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of unique individuals. Thus, clustered trap configurations and even

regular trap configurations may be sufficient, and more intense

sampling designs unnecessary, when traps arrays with spacing of

less than 2s can be achieved. However, if trap spacing is .2s,
such as when forced due to large spatial extents, non-regular trap

arrangements should be favored in order to maintain the precision

of estimators. In this situation, our results suggest that the clustered

configuration would likely be the most efficient to employ.

We identified several instances of tradeoff between precision

(SD) and bias (MNB) in parameter estimation. However, values of

RMSE, which incorporates bias and variance, were similar to the

corresponding values of SD, and estimates of bias were low. Thus,

any observed tradeoffs between precision and bias were not

consequential.

Naturally, our simulations were not exhaustive of the parameter

space. Particularly, we held the spatial extent constant to mimic

conditions for a predetermined study area, and defined the upper

bound of number of traps (J = 128) based on limits we expect

researchers would likely face. As a result, we did not explore trap

clusters with .4 traps, which would have allowed larger spatial

extents by setting clusters farther apart than 9.06 km. Larger

spatial extents allow for more individuals to be detected, and

would be applicable for populations with lower densities and/or

larger ranges of movement. At the same time, spatial extents

smaller than examined here would provide further insight into the

minimum requirements for robust parameter estimation. Such

simulations that continue to investigate the balance between

spatial extent and trap spacing would be valuable for future

research.

Conclusion

Our simulations demonstrate that 1) gains in precision and

accuracy of parameter estimates are related to both trap

configuration and trap spacing, which is relative to the spatial

scale parameter and home range size, and that 2) increased

numbers of traps per cluster (at least up to four traps per cluster)

improve precision. Our simulations reinforce the understanding

that although different SCR sampling designs can provide

accurate and precise estimators of population parameters, effective

estimation requires datasets that include captures and spatial

recaptures of a sufficient proportion of the population. These

Table 5. For s= 1 km, summary estimates of N̂N in the regular
trap configuration when trap spacing increased from 4.71 to
9.60 km (J = 128 to 32 traps) and N= 500.

p0 =0.20 Mean SD Min Max RMSE MNB

4.71 509.0 75.1 323.7 843.7 75.57 0.00

5.24 654.3 318.6 222.9 2059.0 353.73 20.07

6.4 591.2 270.7 219.0 2111.5 285.41 0.00

9.6 636.8 398.3 119.7 2744.5 419.88 0.08

p0 =0.10

4.71 546.8 177.9 240.4 1696.0 183.78 20.01

5.24 654.3 318.6 222.9 2059.0 353.73 20.07

6.4 705.0 534.0 131.8 5726.3 571.49 0.04

9.6 1.3E11 2.8E12 103.0 6.3E13 2.82E12 0.08

p0 =0.05

4.71 2.8E11 6.3E12 168.5 1.4E14 6.29E12 20.02

5.24 1.3E7 2.9E8 120.2 6.5E9 2.90E8 20.12

6.4 1.9E13 4.1E14 91.1 8.8E15 3.94E14 0.21

9.6 3.1E11 5.0E12 45.0 9.7E13 4.39E12 0.35

,500 iterations were used for the italicized estimates, due to instability of MLE
with sparse datasets.
At p0 = 0.20 and trap spacing of 9.60 km, 498 iterations were used to calculate
the mean estimate (2 iterations discarded).
At p0 = 0.10 and trap spacing of 9.60 km, 492 iterations were used to calculate
the mean estimate (8 iterations discarded).
At p0 = 0.05, and trap spacings increasing from 4.71 km to 9.60 km, 497, 489,
457, and 381 iterations were used to calculate mean estimates (3, 11, 43, and
119 iterations discarded, respectively).
doi:10.1371/journal.pone.0088025.t005

Table 6. For s= 1 km, summary estimates of ŝs in the regular
trap configuration when trap spacing increased from 4.71 to
9.60 km (J = 128 to 32 traps) and N= 500.

p0=0.20 Mean SD Min Max RMSE MNB

4.71 1.00 0.07 0.80 1.22 0.07 20.01

5.24 0.98 0.10 0.57 1.30 0.10 0.00

6.40 0.98 0.17 0.49 1.39 0.17 20.03

9.60 0.99 0.24 0.46 1.78 0.24 20.08

p0=0.10

4.71 1.00 0.13 0.57 1.41 0.13 20.03

5.24 0.96 0.19 0.50 1.76 0.20 20.01

6.40 0.98 0.24 0.50 1.51 0.24 20.07

9.60 1.06 0.90 0.36 16.53 0.89 20.33

p0=0.05

4.71 0.97 0.24 0.38 1.89 0.24 20.05

5.24 0.93 0.36 0.36 5.56 0.36 20.04

6.40 1.02 0.32 0.39 2.90 0.31 20.13

9.60 1.45 2.44 0.26 19.77 2.16 21.26

,500 iterations were used for the italicized estimates, due to instability of MLE
with sparse datasets.
See Table 5 footnote for number of iterations used for the italicized estimates.
doi:10.1371/journal.pone.0088025.t006

Table 7. RMSE values of estimators of N̂N , as effective trap
spacing (i.e., trap spacing/s) increased under the regular trap
configuration and across all baseline detection probabilities
(p0 = 0.20, 0.10, 0.05).

Trap spacing (s) p0 = 0.20 p0=0.10 p0=0.05

0.47 0.3 1.1 3

0.52 0.6 1.9 4.3

0.64 1.1 2.8 6.4

0.94 6.4 9.4 14.1

0.96 3.1 6.8 12.7

1.05 7.3 10.7 17.5

1.28 8.8 13.3 23.8

1.92 14.6 23.5 49.9

4.71 75.57 183.78 6.29E+12

5.24 353.73 353.73 2.90E+08

6.4 285.41 571.49 3.94E+14

9.6 419.88 2.82E+12 4.39E+12

doi:10.1371/journal.pone.0088025.t007
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results highlight the importance of understanding the spatial

characteristics of a study population, such as home range sizes of

different portions of the population, spatial scales of movement, as

well as information about the ability to detect individuals.

In developing sampling designs for spatial capture-recapture

studies, our results suggest the following strategy for devising a

sampling design: 1) determine the spatial extent of the study

population, 2) determine the maximum trap spacing based on the

minimum value of the spatial scale parameter, 2smin, 3) if enough

traps are available to space traps less than 2s in a regular

arrangement, do so, assuming it is practical to implement, 4)

otherwise, consider traps in a clustered configuration with wider

spacing between clusters, and more traps per cluster as expected

detection rate decreases. With the increasing application of SCR

methods and the effort required of mark-recapture efforts, it is

important to understand the consequences of different sampling

designs for large-mammal populations. Simulations provide an

accessible opportunity to explore different sampling arrangements,

allowing researchers to identify feasible designs that most

efficiently utilize effort and resources.
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